

STonitor

Table of Contents

	Installation

	Setup

	Usage

	Settings

	Constants

	Buttons

	Changelog

	Known Bugs

	Frequently Asked Questions

About

STonitor is an application that’s designed to help admins (and sometimes players) on eGO servers by automatically
analyzing TTT and JB logs to facilitate understanding them. STonitor also comes with a Steam Age feature which’ll list
the age of steam accounts connected to any CS:GO server as well as CS:GO playtime (if available). This application may
eventually evolve to contain a broader spectrum of features that would be useful.

Important

This program is designed to assist in the analysis and understanding of logs, it cannot replace human
discretion and understanding. This program is only able to make sense of the information provided to it (logs) and
won’t be able to understand what’s going on in the game if it isn’t in logs. An example would be the program
reporting a JB wardenless freekill, the player that was supposedly freekilled is in armory and is thus KOS regardless
of if there is a warden or not. The program is unable to tell because location information is unavailable in logs.

If you want to use this program, start with the step-by-step Installation instructions.

Features

The majority of these features and their sub-features can be disabled using the detailed settings file. To understand
how to edit this file and what each parameter means, go here.

	
	Steam Age
	
	Automatically runs when status is typed in the CS:GO console

	
	Automatically retrieves and outputs the account age of everyone on the server
	
	If an account is private, the age is estimated by getting the ages of accounts created directly after the private account

	Automatically retrieves and outputs player’s CS:GO playtime if available

	Automatically retrieves and outputs player’s server playtime if available (using GameME)

	
	JB Log Analysis
	
	Wardenless Freekill: Notifies you when a CT kills a non-rebelling T without warden alive

	New Warden Freekill: Notifies you when a CT kills a non-rebelling T within X seconds of a new warden coming on

	ST Freekill: Notifies you when a CT kills an ST

	Mass Freedamage: Notifies you when a CT throws an HE grenade or molotov and damages more than X Ts within Y seconds

	
	Early Vent: Notifies you when a CT breaks a vent/wall before any T does
	
Note

On certain maps, a player opening cell doors may count as breaking a vent/wall, creating a false-positive

	
	Button Grief: Notifies you when someone presses a button and players take damage from the world within X seconds after
	
	By default, the warden is not counted in this, it can be toggled off in settings however

	The damage threshold before a warning is triggered is configurable in settings

	Buttons can be ignored or renamed using a Button Configuration file

	
	Nade Disruption: Notifies you when a prisoner throws utility and players take damage from the world within X seconds
	
	The damage threshold before a warning is triggered is configurable in settings

	Gunplant: Notifies you when a T picks up a CT’s weapon before that CT dies

	
	TTT Log Analysis
	
	
	RDM: Notifies you if there may have been a potential RDM
	
	The program can attempt to detect reasoning and eliminate reasonable bad kills. This is done by going back through logs to check if the ‘victim’ of the RDM attacked the potential RDMer first.

	
	Mass RDM: Notifies you if a player has more than X bad kills in a single round
	
	Similarly to RDM detection, Mass RDM detection can also attempt to detect reasoning, however this is disabled by default for Mass RDM

	Inno Utility: Notifies you when an innocent or detective damages someone with utility

	Log Summary Output: Creates a customizable summary of each round log, so that if you want to take a quick glance, its not as cluttered

	
	Automatic Log Saving: Automatically saves TTT & JB logs on your computer as .txt files, so that you can access them whenever
	
	TTT logs are saved in the format: TTT_round-number-here.txt with round-number-here being the TTT round number. E.g. TTT_12345.txt

	JB logs are saved in the format: JB_datetime-here.txt with datetime-here being the date and time down to the millisecond in which the log was initially processed. E.g. JB_Dec-28-2021_19-28-06_372498.txt

Planned Features

	Patch of cell opening false-positive for vent detection

	Button alias file support

Potential Features

	Admin chat highlighting and storing

Installation

There are two ways to install STonitor, you can use the provided Installer for Windows, or you can install it manually.
The Installer is not guaranteed to work, and may potentially cause a false-positive in your antivirus software.
If you are concerned about this, you can install it manually.

Installer

As of version 2.2.0, STonitor has an installer for Windows. This is the easiest way to install STonitor,
although less stable than the manual installation (if you know what you’re doing when performing the manual
installation).

Downloading the Installer

	Head over to the releases page and grab the latest version. This link [https://github.com/blankdvth/STonitor/releases/latest] also brings you there.

	Once you’ve found a proper release, check the assets section near the bottom and download the Installer (STonitor_Setup_X.X.X.exe, the Xs are version numbers).

Running the Installer

Once you have the Installer downloaded, you’ll need to run it. In order to do this, head over to the location where you
downloaded the Installer, and double-click it. Windows SmartScreen may pop up, warning you about the Installer being
potentially unsafe, this is because the Installer is not signed. You can safely ignore this warning and continue with
the installation by clicking More info, then Run Anyway.

Continue through the installation process, and you should be good to go! Once the installation is complete, you can
get started on the Setup.

Manual Installation

STonitor’s manual installation is neither streamlined or easy, depending on how experienced you are with things like
this, things may go wrong (solutions to some common issues may be available in the FAQ). If you want
something easy to install, you can use the Installer or check out
Sonitor [https://github.com/MSWS/Sonitor] by MSWS.

Emphasis and warnings aside, the installation instructions below are fairly detailed, as long as you follow them, you
should be fine. This installation process is also fairly standard, if you encounter an issue not covered in the FAQ,
you’ll likely be able to find a solution fairly fast by Googling it.

Installing Python

STonitor is made using Python, and needs Python to run. If you’ve already installed a 3.X version, great, you can skip
this part. If not, follow the steps below:

	
	Download a 3.X version of Python, to do so, head to Python’s official site [https://www.python.org/downloads/]. Don’t install the version on the Microsoft Store, that commonly causes odd problems.
	
Note

This program was developed on the 3.8.2 version, however the majority of modern v3.X versions should all
work fine

	
	Run the installer (may differ depending on Operating System).
	
Attention

Be on the lookout for a checkbox labeled Add to PATH while installing, make sure that it’s
checked or you’ll likely run into issues.

	
	Once the installation has been completed, test it. Open up a command prompt window and type python --version.
	
	If the version number you installed pops up, it’s installed properly, congrats!

	If the command is unrecognized, make sure that it’s installed properly AND added to PATH.

	If the version number is wrong, you may already have a version installed, as long as it’s 3.X, you can use it.

Downloading STonitor

Congrats on installing Python. The next part is fairly straightforward, download the most recent version of STonitor.

	Head over to the releases page and grab the latest version. This link [https://github.com/blankdvth/STonitor/releases/latest] also brings you there.

	Once you’ve found a proper release, check the assets section near the bottom and download the one labeled Source code (zip).

	When the download has finished, extract the ZIP file to your location of choice. This is where the program will reside, so it’s recommended not to leave it in Downloads and rather someplace accessible and memorable.

Installing Requirements

That was easy, wasn’t it? This one’s slightly harder, but still not horrible. We’re going to be installing the packages
(requirements) that are needed for STonitor to operate properly.

	
	Open up a command prompt window and navigate to the folder where you installed STonitor. There are multiple ways of doing this, here’s the most common two:
	
	This is the fastest way. Open up Windows Explorer to where you extracted STonitor, then click the address bar (the thing at the top that shows where you are) and enter cmd then press enter. This will automatically open up command prompt to the proper location

	This is another slower way if the first one doesn’t work out. Press Windows + R, and enter cmd in the Run dialog. Press enter and it’ll open Command Prompt, after that, cd (change directory) to where you installed STonitor. To do so, enter cd path/to/stonitor/here, replacing path/to/stonitor/here with the path to STonitor’s install location

	
	Once you’ve opened up a command prompt window and properly navigated to STonitor’s install location (make sure you’re in the root folder, that’s the folder that has the file named requirements.txt), enter the following command: pip install -r requirements.txt. You should see an output and multiple progress bars installing the packages.
	
Tip

If it says command not found, first try to replace pip with pip3. If it still doesn’t work, try to replace it with python -m pip. If it still doesn’t work, go back and make sure you installed Python properly.

Tip

If it says that it couldn’t find requirements.txt, make sure you’re in the right folder

	Make sure that everything has been properly installed (you should see Successfully installed then a lot of names)

Done

Congrats! You’ve finished the installation portion, now get started on the Setup.

Setup

Now that installation is done, it’s pretty much all a breeze from here on out. This section is a short one, first time
setup before you start to use STonitor.

Configure CS:GO AutoExec

By default, CS:GO doesn’t output it’s console anywhere, in order for this program to work, we need to change that.
Luckily it’s pretty simple!

	Open up a file explorer window and navigate to your CS:GO cfg directory, for most people, it’s at: C:/Program Files (x86)/Steam/steamapps/common/Counter-Strike: Global Offensive/csgo/cfg.

	In that folder, open the file named autoexec.cfg (if this file doesn’t exist, that’s fine, create one that’s named that exactly)

	Near the end of the file, add this line in: con_logfile output.log

	Save the file

	Run CS:GO once so that the file gets generated (STonitor checks if it exists before running)

Hint

Make sure you have “Show File Extensions” enabled in Windows Explorer, otherwise you’ll end up with a file
named autoexec.cfg.txt which won’t work. This can be enabled in the View tab of Windows Explorer.

Run STonitor

Run STonitor, how this is done depends on how you installed it. If you installed STonitor via the Installer, simply
double-click the Desktop Shortcut, or find it in the run menu (the same way you do any other program).

If you performed a manual installation, open a command prompt window to STonitor’s installation location (see the
Installation section if you forgot how to do so) and enter python STonitor.py.

The program will open and notify you that there were missing data files and that it created them. This is normal for
first time setup. It will also ask you whether you want to open the data folder, enter Y, then press enter.

Fill in Settings

Open the data folder (the program should have automatically opened it for you if you asked it to, if you didn’t,
see the FAQ entry on the location of the data folder). Inside this data folder,
you’ll find a file named settings.yaml. The majority of parameters will already have a default value set, you can
change them as needed to your preferences however. This documentation page tells you what each of
the parameters in the file mean. You can open this file in most file editors, Notepad (or Notepad++ for the more
advanced) will work perfectly fine.

Fill in the Steam API Key

In settings.yaml you’ll find an empty parameter named steamkey. If you want to use the steam account age
(and/or CS:GO playtime) feature, you’ll need to fill this in. A steam API key is what is used to authenticate with
Steam in order to retrieve this data. Luckily getting one is a piece of cake, head on over to
this steam page [https://steamcommunity.com/dev/apikey] and you can easily get one (you will need to login). Once
you’ve gotten one, paste it into the file. It should look something like this: steamkey: '31312ANDSAHW1324' (actual
steamkey in the example is made up, yours will likely be longer and look different).

All Set

Once you’ve adjusted all of the settings to your liking, STonitor is ready to go. To run it, simply double-click the
desktop shortcut (if you used the Installer), or navigate to the folder in Command Prompt and enter
python STonitor.py (if you performed a manual installation).

It’s fairly straightforward to use, but if you don’t know how to use it or want a refresher, head on over to Usage.

Using a Batch File (only for manual installation)

If you performed a manual installation and don’t want to have to bother with command prompt everytime, you can also
use a batch (.bat) file to run it. Batch files basically run a sequence of command prompt commands automatically when
you run it (if you’re on Linux, use bash, it’s fairly similar and you probably already know how to). Using one is
fairly easy, follow the below instructions:

	Find the location want the Batch file to be. Right click, hover over new, then click Text Document.

	Make sure File name extensions is checked in the View tab of Windows Explorer.

	When it asks you for a name (this step is important), press Ctrl + A (select all text), and enter STonitor.bat. It doesn’t have to start with STonitor, it can be whatever you like as long as it ends with .bat.

	It’ll tell you that changing a file’s extension can make it unusable, it’ll be perfectly fine, click Yes.

	Right click the file that it’s created, then click Edit

	Paste the following code into the file and save it, replace the path in the example with the full path to where you installed STonitor.

@echo off
cls
title STonitor
cd C:/Users/Username/Desktop/STonitor
python STonitor.py
pause

Hint

You can also move this file to your Home directory (this is usually C:\Users\Username\) so that you can
just enter the filename of the bat file in Run (Windows + R) to access it easier. E.g. if your filename is
stonitor.bat, you can just enter stonitor in Run for it to open.

Usage

How to use JB Log Analysis

When a new JB log is detected in the console output, STonitor will automatically parse it and output data according
to each of it’s sub-features. No manual user input is needed. It’ll generally be in the format:

<header here>
JB Logs (<date and time here (matches filename if saving is enabled)>)
<summary output here>

<sub-feature name>:
<sub-feature output>

Sub-feature name and sub-feature output repeats for every enabled sub-feature that has at least 1 detection.

How to use TTT Log Analysis

When a new TTT log is detected in the console output, STonitor will automatically parse it and output data according
to each of it’s sub-features. No manual user input is needed. It’ll generally be in the format:

<header here>
TTT Logs (#<round number here>)
<summary output here>

<sub-feature name>:
<sub-feature output>

Sub-feature name and sub-feature output repeats for every enabled sub-feature that has at least 1 detection.

How to use Log Saving

If enabled, logs are automatically saved to your computer. If you want to access these logs, open
the data folder, then the logs folder. Inside will be numerous text files.
TTT text files are stored according to round number (the thing that gets outputted at the start of every log),
for example: TTT_123456.txt. JB text files are stored according to the date and time up to milliseconds of the
log being parsed (milliseconds are there to prevent overwriting previous logs in case your computer is too fast and
your check interval is low), for example: JB_Dec-29-2021_15-19-56_773927.txt.

How to use Steam Account Age Checking

Open up your CS:GO developer console, and type status while you’re in a server. The program will detect it being
outputted and automatically parse and retrieve the desired data. This may take a while depending on how many people
are cached, how many are on the server, your internet speed, your computer specs, and what not. You will see a header
and the words Processing status, this may take a while... fairly quickly however.

Here’s what a full output line looks like, not all players will have everything depending on account privacy settings:

228 =(eGO)= MSWS 5 years and 3.05 months (GPT: 3 months and 10.16 days) (SPT: 31 days 06:49:14 hours)

it’s in the format:

<player id> <name> <steam age> (GPT: <CS:GO playtime>) (SPT: <server playtime>)

If an account has a ~ infront of the account age, that means that the account is private and the age was guessed.

Attention

There may be a couple issues associated with status parsing.

If the status doesn’t get detected, try
run the status command again, this is because if it happens to be outputted as a output.log clear happens, it
doesn’t get detected.

Sometimes, if the server is too full, the footer (#end) doesn’t get outputted. This causes
the program to freak out and recover by cancelling parsing and flushing logs. If this happens, you can print the
footer yourself by entering echo #end in console quickly after issuing status. This tricks the program into
thinking the status finished successfully. (You may get 1 or two invalid lines but that’s fine).

How to edit Settings

To edit settings, open the data folder, then edit the settings.yaml file
as if it were a text (.txt) file. If you want to know what each option does, go to the Settings page.

Settings

Here’s a list of all of the currently available settings parameters, and what they do

	output_file: Full path to where the CS:GO output.log file is located, the prefilled value is the default for most people. Default Value: C:/Program Files (x86)/Steam/steamapps/common/Counter-Strike Global Offensive/csgo/output.log

	steamkey: Your steam API key, needed to use the account age and CS:GO playtime features. Example Value: 12345A789101234FJ32U

	check_delay: The delay in between the program checking the output.log file for new contents, in seconds. The lower it is the faster you get results but the more resources the program uses.. Default Value: 5

	clear_output_log: Boolean (true/false) of whether output.log should be cleared once STonitor is done with it, this prevents repeat output (a runtime caching solution is implemented for JB & Status and a round number session solution for TTT in the case that you turn this off). Default Value: true

	clear_on_start: Boolean (true/false) of whether output.log should be cleared when STonitor starts. Default Value: false

	clear_on_error: Boolean (true/false) of whether output.log is automatically cleared on error to attempt to fix corrupted log issues. Upside is less crashes, downside is potential lost log.. Default Value: true

	confirm_exit: Boolean (true/false) of whether the program will ask you to confirm exiting by pressing enter. This may not work in all cases (certain errors at certain locations will bypass this). Default Value: true

	update_check: Boolean (true/false) of whether the program will check for newer versions on run. Default Value: true

	constants_check: Boolean (true/false) of whether the program will check for non-expected constants on run. Default Value: true

	show_disclaimer: Boolean (true/false) of whether the program will show a disclaimer when it starts. Default Value: true

	header: The header that gets outputted before each program output session/log analysis. In order to create new lines, just press enter to make a new line as you would in any other file. This value must be in single quotes (‘). Example Value: ====================

	
	logs:
	
	save_logs: Boolean (true/false) of whether logs should be saved to a .txt file for archival purposes. Default Value: true

	
	jb:
	
	enable: Boolean (true/false) of whether JB log analysis should be enabled. Default Value: true

	
	subfeatures: Boolean (true/false) toggles for whether each subfeature in JB log analysis is enabled
	
	early_vent: Notifies when a CT breaks vents before any prisoner does. Default Value: true

	wardenless_kill: Notifies when a CT kills a non-rebelling T without a warden. Default Value: true

	new_warden_kill: Notifies when a CT kills a non-rebelling T within X seconds of someone becoming warden, X is set in the limits section. Default Value: true

	st_kill: Notifies when a CT kills an ST. Default Value: true

	button_grief: Notifies when someone presses a button and players take more than X damage from the world within Y seconds, X and Y are set in limits. Default Value: true

	nades: Notifies when someone throws a nade/utility (flash, HE, molotov, etc) and players take more than X damage from the world within Y seconds, X and Y are set in limits.. Default Value: true

	mass_freedamage: Notifies when a CT throws a nade and more than X Ts take damage within Y seconds, X and Y are set in limits. Default Value: true

	gunplant: Notifies when a T picks up a CT’s weapon before that CT dies. Default Value: true

	
	limits: Various configuration values for the sub-features above
	
	button: Number of seconds after someone presses a button that the program will be looking for damage from the world. Default Value: 10

	nade: Number of seconds after someone throws utility that the program will be looking for damage from the world. Default Value: 10

	warden: Number of seconds after someone becomes warden that the program will be looking for potential freekills. Default Value: 5

	freeday_delay: Number of seconds after warden passes or gets fired that the program will begin looking for potential freekills. Default Value: 10

	mass_freedamage: Number of seconds after a CT throws a nade that the program will be looking for Ts taking damage from that person using that nade. Default Value: 5

	mass_freedamage_threshold: Number of unique players that take damage from a CT’s nade before it’s considered potential mass freedamage. Default Value: 4

	world_damage_threshold: Minimum amount of damage for someone to take from the world for it to be considered in button grief detection and nade disruption detection. Default Value: 15

	ignore_warden_button: Boolean (true/false) of whether warden is counted in button grief detection. Default Value: true

	gunplant_show_time: Boolean (true/false) of whether to show the timestamp when outputting gunplant detection. Default Vaue: true

	
	summary_output: Boolean (true/false) to enable various types of actions to be shown in the JB summary output
	
	kills: Whether kills are shown in the JB summary output. Default Value: true

	warden: Whether someone becoming warden is shown in the JB summary output. Default Value: true

	warden_death: Whether warden dying is shown in the JB summary output. Default Value: true

	pass_fire: Whether warden passing or being fired is shown in the JB summary output. Default Value: true

	damage: Whether someone being damaged is shown in the JB summary output. Default Value: false

	vents: Whether someone breaking vents is shown in the JB summary output. Default Value: false

	button: Whether someone pressing a button is shown in the JB summary output. Default Value: false

	drop_weapon: Whether someone dropping a weapon is shown in the JB summary output, note that CTs dying counts as them dropping their weapons (don’t worry, gunplant detection handles this). Default Value: false

	pickup_weapon: Whether someone picking up a weapon is shown in the JB summary output. Default Value: false

	world: Whether to show an action if the attacker is the world (game deaths/fall damage deaths). Default Value: true

	
	ttt:
	
	enable: Boolean (true/false) of whether TTT log analysis should be enabled. Default Value: true

	
	subfeatures: Boolean (true/false) toggles for whether each subfeature in TTT log analysis is enabled
	
	rdm: Notifies when a player may have RDMed someone. By default, reason will be detected (configurable in limits). Default Value: true

	mass_rdm: Notifies when a player may have mass RDMed. By default, reason will not be detected (configurable in limits). Default Value: true

	inno_utility: Notifies when an innocent or detective throws utility and someone gets damaged by it. Default Value: true

	wallhack_purchase: Notifices when a Traitor purchases wallhack. Default Value: true

	
	limits: Various configuration values for the sub-features above
	
	rdm_detect_reason: Boolean (true/false) of whether reason is detected for normal RDMs. All reason detection is is going back in logs to check if the victim of an RDM attacked/damaged the attacker/potential RDMer first. If they did, it’s not considered RDM. Default Value: true

	mass_rdm: Number of RDMs for a player to be considered Mass RDMing. Default Value: 2

	mass_rdm_detect_reason: Boolean (true/false) of whether reason is detected for mass RDMs. See description of ``rdm_detect_reason`` for how reason detection works. Default Value: false

	utility_bad_only: Boolean (true/false) of whether only bad damage is counted for inno utility detection. Default Value: false

	
	summary_output: Boolean (true/false) to enable various types of actions to be shown in the TTT summary output
	
	kills: Whether kills are shown in the TTT summary output. Default Value: true

	damage: Whether damage is shown in the TTT summary output. Default Value: false

	id: Whether body IDing is shown in the TTT summary output. Default Value: false

	dna_scan: Whether Detective DNA scans are shown in the TTT summary output. Default Value: false

	tase: Whether tasing is shown in the TTT summary output. Default Value: true

	shop: Whether shop purchases are shown in the TTT summary output. Default Value: false

	
	age: Steam account age, CS:GO playtime, and server playtime
	
	enable: Boolean (true/false) of whether status/age detection should be enabled. Default Value: true

	cache: Boolean (true/false) of whether to cache account ages (this significantly minimizes the number of API calls, speeding the program up significantly). Default Value: true

	
	subfeatures: Boolean (true/false) toggles for whether each subfeature in TTT log analysis is enabled
	
	csgo_playtime: Whether CS:GO playtime for accounts is retrieved (when available). Default Value: true

	server_playtime: Whether server playtime for accounts is retrieved. Default Value: true

	
	private: Configuration options specifically for private accounts
	
	enabled: Boolean (true/false) of whether private account age guessing is enabled. This is done by checking the account ages of accounts made immediately after the private account to estimate the age of the private account. Default Value: true

	tries: Number of tries for private account age detection (number of accounts after private account) to try before giving up. Default Value: 10

	
	colours: Settings regarding coloured output of STonitor. Valid colours are black, red, green, yellow, blue, magenta, cyan, and white
	
	enable: Boolean (true/false) of whether output should be coloured. Default Value: true

	time: Colour for outputs related to time. Default Value: cyan

	name: Colour for player names. Default Value: magenta

	button_name: Colour for names of buttons. Default Value: yellow

	weapon_name: Colour for names and types of weapons. Default Value: yellow

	damage: Colour for damage numbers (points of damage, number of players damaged/killed, etc). Default Value: red

	role: Colour for player role names. This setting can be set to “automatic”, in which the colour will be based off of their role. This can cause overlap of colours. Default Value: automatic

	age: Colour for player steam account age in Steam Age output. Default Value: cyan

	level: Colour for player level in Steam Age output. Default Value: red

	game_playtime: Colour for playtime of game in Steam Age output. Default Value: yellow

	server_playtime: Colour for playtime on the server in Steam Age output. Default Value: green

Changed in version 2.1.1: Removed jb/limits/gunplant as new gunplant detection system no longer uses it

Changed in version 1.0.1: Removed min_session_save_interval as session is no longer used

Constants

Constants is another configuration file that’s a bit more complicated. Generally you shouldn’t ever touch anything in
here unless instructed to or you know exactly what you’re doing.

	
	ttt:
	
	regex: Named regex for each type of action listed

	log_header: Full line of the header indicating the start of TTT logs

	log_separator: Full line of the footer/separator indicating the end of TTT logs

	utility_weapon_names: List of weapon names that count as utility

	wallhack_name: Name of the wallhack item when purchased from the shop

	
	jb:
	
	regex: Named regex for each type of action listed

	log_header: List of all 3 lines that indicate the start of JB logs

	log_separator: List of all 3 lines that indicate the end of JB logs

	utility_weapon_names: Pairs of utility names and their corresponding weapon names

	utility_names: Utility names to ignore for gunplant detection

	
	age:
	
	regex: Named regex for each line in status

	header: Full line of the header indicating the start of a status output

	footer: Full line of the footer indicating the end of a status output

	
	gameme:
	
	playerinfo_url: URL to GameME player info redirect page without a trailing /.

	game_code: Pairs of IPs and their corresponding game codes on GameME

	connected_regex: Regex to detect ``Connected to <ip here>`` lines

	error_threshold: Number of errors the program will attempt to recover from before exiting

	github_release_latest: URL to latest GitHub releases page for STonitor

Buttons

STonitor has a button configuration YAML file. This can be used to create aliases/nicknames for button names or button
IDs in Jailbreak logs, it can also be used to specify that you wish for that button to be ignored in JB log parsing
(for things like button griefs), this is mostly used for safe buttons to lower the amount of false positives (like cells
opening or buttons similar to that). You can find the file in data/buttons.yaml in STonitor’s directory. There are
already some default values filled in.

The file itself is split into two large categories: normal and regex. Normal allows you to specify individual
button names or IDs to configure them, and is pretty simple to use. Regex allows you to use RegEx(p) to specify groups
of button names, Regex is fairly advanced and it’s not recommended you use it unless you know what you’re doing.

Each configuration regardless of if it’s normal mode or regex mode has two parameters (ignore and alias).
A simple example using normal button names is the following:

celldoors:
 ignore: true
 alias: Cell Button

The ignore value in each configuration can be either true or false. true means that that button will be
ignored in detection operations (such as button grief detection). false means that it will still be detected (this
is the default value).

The alias value is to specify an alias for that specific button. In the example above, celldoors will be
replaced with Cell Button when it’s shown in STonitor’s output. null means the name will be unchanged (this
is the default value)

If you’re inexperienced with YAML, it’s recommend you add single quotes to the start and end of each value, to avoid
you accidentally using formatting characters (ignore and alias are fine, no need to add quotes around them).
true, false, and null should not be surrounded with quotes either as
they are not literals (unless you want the name of a button to be null for some reason, then surround it with
quotes in that case). The above example would become:

'celldoors':
 ignore: true
 alias: 'Cell Button'

Both ignore and alias must be present even if they’re not being used.
If you do not fill in one of the required arguments, it will be created with default values. For ignore, the default
is false, for alias, the default is null.

Normal

Normal mode is easy, specify the button name that shows in logs (as shown above, celldoors is the button name in
that example). If you want to use a Button ID, use the format '#id here', for example: '#12345'. Note that
using single quotes IS A MUST in this case, as # is a formatting character in YAML. Here are examples for both
methods (ignore and alias are random values in both examples):

Button Name

'celldoors':
 ignore: true
 alias: 'Cell Button'

Button ID

'#123456':
 ignore: false
 alias: 'Some random button'

Regex

Warning

Do not use Regex unless you know exactly what you’re doing

STonitor uses re.fullmatch with the Regex and button name (you can’t use Regex for Button IDs), this means that the
Regex must fully match the button name, not just contain a match to the Regex. If you want it to just need to contain
the Regex, add .* to the start and end of the regex. It’s recommended to use Regex101 [https://regex101.com] to
build your Regex and test if it works properly (make sure to set the flavor to Python).

To use Regex, simply put the regex where Button Name and Button ID would be in normal mode. For example:

'piano_key_\ws?':
 ignore: true
 alias: Piano Key

Note: Precedence

Normal takes precedence over Regex, which means that if something is both a match for a normal config and a regex
config, the normal config is the one that will be used.

Both normal and regex are processed in order, which means that if something matches both the first and last value, the
config of the first value is the one that will be used.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[Unreleased]

[2.3.0] - 2023-04-07

Added

	New log types to TTT Summary Output

	Body IDing

	Detective DNA Scans

	Tasing

	Shop Purchases

	Automatic checking for updated constants

	Add detection for wallhack purchases

	Option to show time for gunplant detection

Changed

	Added option to clear output.log on program start

	Cleaned up TTT implementation

	Ignore gunplant detection in LR/LG

Fixed

	Outdated default GameME link for eGO

	Ensured that users can see the FileNotFound error when searching for output.log

	Various minor errors in the documentation (spelling, old information, etc)

[2.2.0] - 2022-11-04

Added

	Shows disclaimer on startup

	Created installer for Windows

Changed

	Added healthshot to gunplant ignore

	Updated GitHub update checking URL to new one

	Moved data folder to native data location (APPDATA, .config)

	Documentation updated to reference Windows installer

	The program now asks if you want to open the data folder if it generates it

	Clarify additional step in manual BAT setup instructions

Fixed

	Incorrect default colours listed in settings documentation

	Typo in default button config

	TTT summary output not showing damage dealt

	Edge case in which the program would crash if there was a specific issue retrieving account age

	Broken update checking as a result of repo URL change

[2.1.2] - 2022-05-15

Changed

	Default colours so that they’re more readable with default Command Prompt

Removed

	Unused colour playtime

[2.1.1] - 2022-05-15

Added

	jb_undertale pictionary draw button to default ignore

	Various entries regarding JB logging in the known bugs documentation page

	Coloured output to make wall of text easier to understand

	ST kill detection

	Summary output for weapon pickup

Changed

	Better invalid status line logging

	Version number now shows in ready message

	Gunplant detection now simply checks if a T picks up a CT’s weapon before that CT dies

Fixed

	Outdated default GameME link for eGO

	Space padding incorrect on button grief output

	Fix odd invalid status line error

	Typo in documentation index page

Removed

	Feature list is no longer shown in README

[2.0.1] - 2022-01-20

Fixed

	Regex not matching status lines when space padded

[2.0.0] - 2022-01-20

Added

	Clarification on common status issues in documentation

	Check if output.log exists at runtime

	Ability to hide world actions from summary output

	Steam level to status

	Basic support for new ST role in logs

	FAQ entry for new GameME detections

	Known bugs page on documentation

	Show error message on status error

	Button ignore & alias file

Changed

	Output.log now opens in UTF-8 encoding

	Non-context roles now show as T/CT to avoid confusion

	Rewrote status parsing code to have less spaghetti

	Other retrievable options are still retrieved if account is private now

Fixed

	KeyError on invalid weapon name (MFD Detection)

	Status getting stuck wo/ #end

	Multi-parse edge cases causing odd bugs

	Early vent false positive on some maps

[1.1.2] - 2022-01-01

Fixed

	Damage regex not triggering if damage was headshot

[1.1.1] - 2021-12-31

Added

	Ability to retrieve server playtime using GameME

[1.0.1] - 2021-12-31

Added

	Ability to wipe output.log on error to try to automatically resolve errors arising from corrupted logs

Changed

	Exempt potential FK/FD during LR and LG instead of just LG

	TTT now uses caching similar to status and JB

	Parsed arrays are now cleared as soon as output.log is cleared to minimize unneeded memory usage

Fixed

	LR detection reporting wrong death

	IndexError in case of corrupted TTT logs

	TTT full logs not being parsed if sm_logs was run during the round to retrieve partial log

Deprecated

	session.json is no longer used, and can be removed

[1.0.0] - 2021-12-30

Initial release, no changes

Known Bugs

Bugs that are currently known about the program, recommended to check this page in latest view for the most up to
date information.

Logs Parsing

JB

	
	LR/LG detection can be incorrect for any one of the following reasons, there’s no practical way to eliminate all of these issues:
	
	If someone does absolutely nothing that gets logged in the entire round, it will break LR/LG detection

	If someone joins in the middle of the round and runs !ghost

	If someone gets respawned in the middle of the round, STonitor will ignore all logs about that person from their death point forward. This is an unintentional side-effect of an intentional feature.

TTT

Status Parsing

	When parsing a very long status, #end doesn’t output properly, this is an issue with CS:GO.

Frequently Asked Questions

I’m getting python or pip is not recognized as an internal or external command

Make sure that it was installed properly, that you checked Add to PATH during the initial installation process, and
that you didn’t use the Windows/Microsoft Store version. If you did any any of those, uninstall and reinstall Python, if
it still doesn’t work, you can try to email me or contact me on Discord to resolve it. I’d recommend Googling first
though as it’s highly likely someone’s already had the exact same issue as you did.

I messed up something in the settings, what should I do?

Delete the settings.yaml file (in the data folder), and it’ll be regenerated
with default values. You’ll have to change the settings again to the values you want and fill in the API key again
however.

I messed with the constants file, and now the program isn’t parsing lines correctly

Delete the constants.yaml file (in the data folder), and it’ll be
regenerated with the proper working default values.

Can I add more GameME server IPs to playtime detection?

Yes, provided that they’re under the same GameME page as the existing entries, you can. To do so, go to
constants.yaml (in the data folder), go to
age -> gameme -> game_code. You can then add the IP you want in the following format:

{ip here}: {game code here}

Replace {ip here} with the IP address of the server you wish to add, and replace {game code here} with the
GameME game code of the specific server you want to add (to get this, go to the GameME page of the server you want to
add and look at the URL, it’ll be visible after the domain. For example csgo3 is the gamecode in the URL
edgegamersorg.gameme.com/csgo3)

Early Vents keeps showing despite no CT breaking vents

There is a bug that occurs on some JB maps in which when a CT opens cells, it gets counted as breaking a vent or wall.
There is a feature that attempts to mitigate this by checking if the last action was the CT pressing a button, but this isn’t foolproof.

Account age output is really slow, what can I do about this?

Unfortunately, account age detection is really slow as it involves a large amount of web requests, and is poorly
optimized at the moment. Enabling the cache if it isn’t already is helps a fair bit. Disabling a couple features will
be the most noticeable however. GameME (server playtime) takes the longest, as it requires scraping the GameME site,
then parsing the HTML (TL;DR it takes a while). Disabling server playtime in the config
(age/subfeatures/server_playtime) will speed it up a lot. If you want it slightly faster, you can also disable
CS:GO playtime, as it requires an extra API call to Steam (age/subfeatures/csgo_playtime), although this isn’t
nearly as slow as GameME.

Why shouldn’t I double click to run STonitor?

This works just fine in most use cases, but if the program crashes or you close it, all output will be instantly gone.
You won’t be able to see it again, normally closing is fine as STonitor will ask you confirm closing but not for errors.
Whether or not you decide to run STonitor by double-clicking is your choice, but using command prompt really isn’t that
inconvenient (if you use a Batch file, it’s actually more convenient!). When using command prompt, the past output still
shows until you close the command prompt window.

Deprecated since version 2.2.0: This is no longer the case as of 2.2.0, you can now double click to run STonitor without any issues if you used the Installer.

How was the name STonitor chosen?

Since the idea for STonitor came from MSWS’ Sonitor, I based the name of the program off of that. Sonitor didn’t support
TTT while I was planning for STonitor to support it, so I added a T for TTT into the name. It was put after the S so
that it was in the order ST, representing Special Treatment for JB. In the end, it’s just me being uncreative and not
wanting to come up with a new name.

Where is the data folder?

On versions 2.2.0 and above, all data is in the standard config directory for your operating system, under a subfolder
named “STonitor”. On Windows, this is C:\Users\Username\AppData\Roaming\STonitor.
On Linux and Mac, this is ~/.config/STonitor.

Note

You can get to the data folder quickly on Windows by opening your File Explorer, clicking the address bar, then
entering %APPDATA%\STonitor, and pressing enter.

Deprecated since version 2.2.0: Prior to version 2.2.0, the data folder was in the same directory as the executable. This is no longer the case (see above).

How do I update STonitor?

If you used the Installer, you can just run it again and it’ll update STonitor. If you performed a manual installation,
extract the new/updated ZIP file into where you originally installed STonitor and override if prompted.

There may also be additional instructions in the release notes for that version, make sure to look through them (and
also the release notes of any versions you skipped). Most commonly, these will be telling you to delete
constants.yaml, session.json, or age_cache.json.

How do I downgrade STonitor?

It’s not recommended to downgrade Sonitor, as there may be unfixed bugs, and other issues in previous versions. If you
still want to, delete all files not in the data folder and then extract the ZIP file of the older version there.
Try to run it, but if you encounter an error than that likely means that the data files aren’t compatible either. You’ll
need to delete the data folder as well and re-configure them as if you were installing STonitor anew.

An invalid line keeps crashing STonitor, how can I resolve it?

You can open the output.log file manually and wipe everything in it, then restart STonitor. If it was an issue with some
corrupted log/output, this will fix it. It’s also recommended to report it as a bug so
that I can fix it within the program and prevent it from happening again.

New in version 1.0.1: STonitor will now automatically wipe output.log on error if the config option clear_on_error is true.

How can I report a bug?

Report a bug on GitHub using the Bug Report issue template, here’s
a link to make things easier [https://github.com/blankdvth/STonitor/issues/new?assignees=blankdvth&labels=bug&template=bug-report.md&title=].
You’ll need to have a GitHub account in order to do this. If you’re unsure about any of the fields/sections in the
template, feel free to leave it blank. A bug report that isn’t complete is better than no bug report.

How can I suggest a feature?

Suggest a feature on GitHub using the Feature Request issue template, here’s
a link to make things easier [https://github.com/blankdvth/STonitor/issues/new?assignees=blankdvth&labels=enhancement&template=feature-request.md&title=].
You’ll need to have a GitHub account in order to do this.

Where can I contact the developer?

If you came from eGO forums, you can feel free to reply to the thread there. You can also email me at
contact[at]blankdvth.com.

Index

 nav.xhtml

 Table of Contents

 		
 STonitor

 		
 Installation

 		
 Installer

 		
 Downloading the Installer

 		
 Running the Installer

 		
 Manual Installation

 		
 Installing Python

 		
 Downloading STonitor

 		
 Installing Requirements

 		
 Done

 		
 Setup

 		
 Configure CS:GO AutoExec

 		
 Run STonitor

 		
 Fill in Settings

 		
 Fill in the Steam API Key

 		
 All Set

 		
 Using a Batch File (only for manual installation)

 		
 Usage

 		
 How to use JB Log Analysis

 		
 How to use TTT Log Analysis

 		
 How to use Log Saving

 		
 How to use Steam Account Age Checking

 		
 How to edit Settings

 		
 Settings

 		
 Constants

 		
 Buttons

 		
 Normal

 		
 Button Name

 		
 Button ID

 		
 Regex

 		
 Note: Precedence

 		
 Changelog

 		
 [Unreleased]

 		
 [2.3.0] - 2023-04-07

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [2.2.0] - 2022-11-04

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [2.1.2] - 2022-05-15

 		
 Changed

 		
 Removed

 		
 [2.1.1] - 2022-05-15

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 [2.0.1] - 2022-01-20

 		
 Fixed

 		
 [2.0.0] - 2022-01-20

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [1.1.2] - 2022-01-01

 		
 Fixed

 		
 [1.1.1] - 2021-12-31

 		
 Added

 		
 [1.0.1] - 2021-12-31

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Deprecated

 		
 [1.0.0] - 2021-12-30

 		
 Known Bugs

 		
 Logs Parsing

 		
 JB

 		
 TTT

 		
 Status Parsing

 		
 Frequently Asked Questions

 		
 I’m getting python or pip is not recognized as an internal or external command

 		
 I messed up something in the settings, what should I do?

 		
 I messed with the constants file, and now the program isn’t parsing lines correctly

 		
 Can I add more GameME server IPs to playtime detection?

 		
 Early Vents keeps showing despite no CT breaking vents

 		
 Account age output is really slow, what can I do about this?

 		
 Why shouldn’t I double click to run STonitor?

 		
 How was the name STonitor chosen?

 		
 Where is the data folder?

 		
 How do I update STonitor?

 		
 How do I downgrade STonitor?

 		
 An invalid line keeps crashing STonitor, how can I resolve it?

 		
 How can I report a bug?

 		
 How can I suggest a feature?

 		
 Where can I contact the developer?

_static/file.png

_static/minus.png

_static/plus.png

